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Why do we need safety certificates?

Learn solidly safe policy in RL:

Jc(π) = Eτ∼π

{∑∞/T

t=0
γtc1(danger)

}
< 0

CMDP constraints: posterior cost function,
not for zero-violation

Energy-based safety certificate: prior
modeling of safety

A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in deep reinforcement learning,”
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Energy-Function-Based Safety Certificates

ϕ energy function / safety index, high for unsafe states.

Safety defined by a sub-level set: Ss = {s|ϕ0(s) ≤ 0}
from ϕ0 to ϕ: high order derivative for inevitably unsafe
states

ϕ = ϕ0 + k1ϕ
′
0 + · · ·+ knϕ

(n)
0 (1)

Control safe set with energy function / safety index ϕ

US(s) := {a ∈ A | ϕ(s ′) < max{ϕ(s)− η, 0}} (2)

Valid safety certificates:

UD
S (s) ̸= ∅,∀s ∈ S (3)

C. Liu and M. Tomizuka, “Control in a safe set: Addressing safety inhuman-robot interactions,”

T. Wei and C. Liu, “Safe control algorithms using energy functions: Auni ed framework, benchmark, and new directions,”
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Why do we need joint synthesis?

Challenging in complex environments with unknown models

Current studies assume either one exists to learn the other

Learning valid safety certificates: Synthesis safety certificate with/guided by known
controllers (model-based, learning-based)[1, 6, 7, 5, 4];

Safe control for system with unknown dynamics: Learn safe control with valid safety
certificates [9, 2, 8, 3]

What if neither controller and valid certificate exists?
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Problem Formulation: Learning Safety Certificates

Synthesis target: validness / feasibility

UD
S (s) := {a ∈ A | ϕ(s ′) < max{ϕ(s)− η, 0}} ≠ ∅,∀s ∈ S (4)

Safety index synthesis optimization
minimizing inevitable energy increase / violation of inequality

min
ξ

J(ϕ) = min
ξ

inf
π
Es

{ [
ϕ(s ′)−max{ϕ(s)− η, 0}

]+ }
(5)

tunable variables ξ = [σ, n, k]

ϕ(s) = σ + dn
min − dn − kḋ (6)

W. Zhao, T. He, and C. Liu, “Model-free safe control for zero-violation reinforcement learning,”
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Problem Formulation: Learning Safe Policies with Constrained RL

Difficulty

Infinite state-dependent constraints on continuous state space?

RL with constrol safe set constraints

max
π

J
(
π
)
= Eτ∼π

{∑∞

t=0
γtrt

}
= Es

{
vπ(s)

}
s.t. ϕ

(
s ′
)
< max {ϕ (s)− η, 0} ,∀s ∈ S

A computable Lagrange function with neural multipliers

L(π, λ) = Es

{
− vπ(s) + λ(s)

(
ϕ
(
s ′
)
−max {ϕ (s)− η, 0}

)}
(7)

H. Ma, Y. Guan, S. E. Li, X. Zhang, S. Zheng, and J. Chen, “Feasible actor-critic: Constrained reinforcement learning for ensuring statewisesafety,”
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Problem Formulation

Constrained RL optimization

max
λ

min
π

L(π, λ) = max
λ

min
π

Es

{
− vπ(s) + λ(s)

(
ϕ(s ′)−max{ϕ(s)− ηD , 0}

)}
(8)

Safety index synthesis optimization
minimizing inevitable energy increase / violation of inequality

min
ϕ

J(ϕ) = min
ϕ

inf
π
Es

{ [
ϕ(s ′)−max{ϕ(s)− η, 0}

]+ }
(9)

Difficulty: Two separate optimization?
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Joint Adversarial Optimization

Recall the KKT condition for (π∗, λ∗) for given state-dependent constraints
If inequality constraints hold at s:

λ∗(s)(ϕ(s ′)−max {ϕ(s)− ηD , 0}
∣∣
π∗) = 0 (10)

else λ(s) → +∞.

L(π∗, λ∗, ϕ) = Es

{
−vπ

∗
(s)︸ ︷︷ ︸

irrelevant term ∆

+λ∗(s)
(
ϕ(s ′)−max{ϕ(s)− η, 0}

)
|π=π∗︸ ︷︷ ︸

=0 if inequality holds

}
(11)

Clip the infinite multiplier by λmax

L(π∗, λ∗, ϕ) = λmaxJ(ϕ) + ∆ → argmin J(ϕ) = argminL′(π∗, λ∗, ϕ)
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Joint Adversarial Optimization

Multi-scale adversarial training with proof, converging to optima of ϕ∗ & π∗.

min
ϕ

max
λ

min
π

L(π, λ, ϕ) (12)
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Results - Safe Control
FAC-SIS (proposed) achieves zer-violation in all environments (ϕh is a handcrafted safety
certificate)
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Results - Feasibility Verification of Safety Certificate
All transactions satisfy the safe action constraints, nearly all sampled states are feasible.

Haitong Ma MECC’21 workshop October 24, 2021 16 / 19



1 Motivation

2 Problem Formulation
Safety Certificates Synthesis
Learning Safe Control Policies
Unifying Two Optimizations

3 Experimental Results

4 Conclusions

Haitong Ma MECC’21 workshop October 24, 2021 17 / 19



Conclusions

We proposed a constrained RL algorithm that simultaneously learns the safe policies and
synthesizes the safety certificates.

We unified the loss function design of SIS and learning safe control policy (i.e., the RL
loss), so we can prove the convergence of the proposed joint synthesis algorithm in a
multi-timescale manner.
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Thanks!
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