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Why do we need safety certificates?

@ Learn solidly safe policy in RL:
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CMDP constraints: posterior cost function, Energy-based safety certificate: prior
not for zero-violation modeling of safety

A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in deep reinforcement learning,”
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Energy-Function-Based Safety Certificates

@ ¢ energy function / safety index, high for unsafe states.
@ Safety defined by a sub-level set: Ss = {s|¢o(s) < 0}

o from ¢g to ¢: high order derivative for inevitably unsafe

states ()
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C. Liu and M. Tomizuka, “Control in a safe set: Addressing safety inhuman-robot interactions,”
T. Wei and C. Liu, “Safe control algorithms using energy functions: Auni ed framework, benchmark, and new directions,”
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Why do we need joint synthesis?

Challenging in complex environments with unknown models

Current studies assume either one exists to learn the other

@ Learning valid safety certificates: Synthesis safety certificate with/guided by known

controllers (model-based, learning-based)[1, 6, 7, 5, 4];

o Safe control for system with unknown dynamics: Learn safe control with valid safety

certificates [9, 2, 8, 3]
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What if neither controller and valid certificate exists?
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Problem Formulation: Learning Safety Certificates

@ Synthesis target: validness / feasibility
Ug(s) = {ae A ¢(s') < max{g(s) —n,0}} #0,Vs € S (4)

@ Safety index synthesis optimization
minimizing inevitable energy increase / violation of inequality

mgin J(¢) = mgin ir;f IES{ [6(s") — max{a(s) —n, O}]Jr } (5)
@ tunable variables £ = [0, n, k]
¢(s) = o +d, — d" — kd (6)

W. Zhao, T. He, and C. Liu, “Model-free safe control for zero-violation reinforcement learning,”
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Problem Formulation: Learning Safe Policies with Constrained RL

Infinite state-dependent constraints on continuous state space? I

RL with constrol safe set constraints Sofety Boundry
[ @ ..‘___‘_‘. °
"""" @
o0
max J(x) = Eree{ 307 're} = Bs{v7(5)}
s.t. gﬁ (S/) < max {¢ (S) -, 0} ,VS c S Statewise Expectation-based

A computable Lagrange function with neural multipliers

L(m,A) =Es{ —v7(s) + A(s)(¢ (s') — max{¢(s) —n,0})} (7)

H. Ma, Y. Guan, S. E. Li, X. Zhang, S. Zheng, and J. Chen, “Feasible actor-critic: Constrained reinforcement learning for ensuring statewisesafety,”
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Problem Formulation

@ Constrained RL optimization

max min L(m,\) = max m7jn Es{ — v7(s) + A(s)(¢(s') — max{¢(s) —np,0})}  (8)

™

@ Safety index synthesis optimization
minimizing inevitable energy increase / violation of inequality

min J(6) = mininf E{ [o(s') — max{a(s) ~7.0}]" } (9)

Difficulty: Two separate optimization? J
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Joint Adversarial Optimization

@ Recall the KKT condition for (7*, \*) for given state-dependent constraints
If inequality constraints hold at s:
X (s)(#(s") — max{¢(s) —np,0}| ,) =0 (10)

else A(s) — +oo.

L(*, N, ¢) = E{ —v (s) + X(5)(o(s") — max{¢(s) — n,0})|[r=r- } (11)

irrelevant term A =0 if inequality holds

@ Clip the infinite multiplier by Amax

L(7*, X, 6) = AmaxJ(6) + A — argmin J(9) = arg min £'(7*, X", ¢)
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Joint Adversarial Optimization

@ Multi-scale adversarial training with proof, converging to optima of ¢* & 7*.

m(;n max min L(m, A, ¢) (12)

ming maxy min, £
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Results - Safe Control

@ FAC-SIS (proposed) achieves zer-violation

certificate)

Hazards-0.

in all environments (¢4 is a handcrafted safety
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Figure 3: Average episodic number of violations of safe ac-
tion constraint (2). A valid safety index and its correspond-
ing safe control policy should have zero violation perfor-
mance.
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Results - Feasibility Verification of Safety Certificate

o All transactions satisfy the safe action constraints, nearly all sampled states are feasible.
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Figure 4: The custom environment and distributions of sam-
pling state and infeasible states under three different initial-
ization setups. The overlap of two distributions are small,
which indicates that there exists feasible control for almost
all sampled states.
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Conclusions

@ We proposed a constrained RL algorithm that simultaneously learns the safe policies and
synthesizes the safety certificates.

@ We unified the loss function design of SIS and learning safe control policy (i.e., the RL
loss), so we can prove the convergence of the proposed joint synthesis algorithm in a
multi-timescale manner.
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